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Abstract The hardness and abrasive wear resistance

were measured after High-Vanadium High-Speed

Steel (HVHSS) were quenched at 900 �C–1100 �C,

and then tempered at 250 �C–600 �C. Via one-hidden-

layer and two-hidden-layer Back-Propagation (BP)

neural networks, the non-linear relationships of hard-

ness (H) and abrasive wear resistance (e) vs. quenching

temperature and tempering temperature (T1, T2) were

established, respectively, on the base of the experi-

mental data. The results show that the well-trained

two-hidden-layer networks have rather smaller training

errors and much better generalization performance

compared with well-trained one-hidden-layer neural

networks, and can precisely predict hardness and

abrasive wear resistance according to quenching and

tempering temperatures. The prediction values have

sufficiently mined the basic domain knowledge of heat

treatment process of HVHSS. Therefore, a new way of

predicting hardness and wear resistance according to

heat treatment technique was provided by the authors.

Introduction

High speed steel with high vanadium content is one

kind of newly-developed wear-resistance material that

has been used for making steel rollers in some

countries [1–4]. Recently, researchers have paid much

attention to the applications of High-Vanadium High-

Speed Steel (HVHSS) in crush industry such as

hammer, jaw, rotor, etc for abrasive wear [5, 6]. The

research results have shown that wear resistance of

HVHSS applied for roll and crush industry is about

3–5 times higher than that of high chromium cast iron

[3–7]. The excellent wear property of HVHSS depends

on its microstructure, i.e., carbides and matrix. At a

certain chemical composition, heat treatment tech-

nique plays a crucial role in changing matrix micro-

structure, such as retained austenite content and

characteristics of martensite, resulting in significantly

influencing on wear resistance. The previous research

mainly focused on the effect of alloys and carbides on

wear properties of HVHSS [1, 2, 8, 9], but neglected

the effect of heat treatment conditions on wear

properties. This work tested the harnesses and wear

properties after HVHSS containing 10%V was treated

by different heat treatment techniques, and then

predicted the effect of heat treatment temperatures

on hardness and wear resistance according to the test

data using artificial neural networks. So that the users

can get proper heat treatment technique of HVHSS for

improving wear resistance.

Neural networks are a class of flexible nonlinear

models inspired by the way in which the human brain

processes information. Given an appropriate number

of hidden-layer units, neural networks can approxi-

mate any nonlinear function to an arbitrary degree of
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accuracy through the composition of a network of

relatively simple functions [10, 11]. The flexibility and

simplicity of neural networks have made them a

popular modeling and forecasting tool across different

research areas in recent years. A variety of different

neural network models have thus developed, among

which the Back-propagation (BP) network is the most

widely adopted in the present study [12–14]. In this

work, the non-linear relationships of the hardness (H)

and abrasive wear resistance (e) vs. quenching temper-

ature and tempering temperature (T1, T2) were

established, respectively, by the use of BP networks.

Building the neural network model

Algorithm

A BP algorithm is a kind of generalized form of the

least-mean-squares algorithm usually used in engineer-

ing. But the basic BP algorithm is too slow for most

practical applications. In order to speed up the algo-

rithm and make it more practical, several modifications

have been proposed by researchers. The research on

faster algorithm falls roughly into two categories. One

involves the development of heuristic techniques such

as the use of momentum and variable learning rates.

The other has focused on standard numerical optimi-

zation techniques such as the conjugate gradient

algorithm and the Levenberg–Marquardt algorithm.

Among these algorithms, Levenberg–Marquardt algo-

rithm is most rapid for medium networks. But it is

difficult to get excellent composite of high training

precision and good generalization capability in this

work when Levenberg–Marquardt algorithm is

employed because the data of hardness and wear

resistance are very dispersive and complicate. In order

to enhance the generalization capability of networks,

two methods, including regularization and early stop,

are often employed. Regularization constrains the size

of the network parameters [15], the idea of which is

that the true underlying function is assumed to have a

degree of smoothness. When the parameters in a

network are kept small, the network response will be

smooth. Thus any modestly oversized network should

be able to sufficiently represent the true function,

rather than capture the noise. With regularization, the

objective function becomes (1)

F ¼ cED þ ð1� cÞEW ð1Þ

where EW is the sum of squares of the network

parameters, and c is the performance ratio, the

magnitude of which dictates the emphasis of the

training. If c is very large, then the training algorithm

will drive the errors to be small. But if c is very small,

then training will emphasize parameter size reduction

at the expense of network errors, thus producing a

smoother network response. The optimal regularization

parameter can be determined by Bayesian techniques

[16]. So this work adopted Bayesian regularization in

combination with Levenberg–Marquardt.

Architecture of model

Quenching temperature (T1) and tempering tempera-

ture (T2) play important roles in influencing hardness

(H) and relative wear resistance (e) of HVHSS when

its chemical composition is certain. The target of this

research is to establish non-linear relationships

between the input parameters (T1, T2) and the output

parameters (H, e) using BP networks. A lot of

computational instances show that two hidden layers

neural networks are suitable [13, 17, 18]. In this paper,

compared with one-hidden-layer neural networks, two

two-hidden-layer networks are built and used for

predicting hardness and relative wear resistance,

respectively (Fig. 1) via the neural- network toolbox

of matlab6.5 [19]. For the one-hidden-layer networks,

the quantity of nodes in hidden layer was determined

by trial-and-error method. After trial-and-error com-

putation for many times by the artificial neural

network program developed via matlab6.5, the optimal

topologies ({2, 7, 1} and {2, 11, 1}) of two one-hidden-

layer networks were gotten, respectively. For the two-

hidden-layer networks, if N is the quantity of nodes in

output layer and N1, N2 are the quantity of nodes in

the first and the second hidden layer respectively,

N2 = N + 1 or N2 = N + 2. Adjusting N1 ensures both

the generalization performance and the rate of the

convergence satisfactory. After trial-and-error compu-

tation for many times by the artificial neural network

program, the perfect topologies ({2, 5, 3, 1} and {2, 15,

2, 1}) of two two-hidden-layer neural networks were

T1

T2

Input layer

Hidden layer
(7 or 11 units)

Output layer

H 

or 

ε ε

T1

T2

Input layer

The first 
hidden layer
(5 or 15 units)

Output layer

H 

or 

The second 
hidden layer (3 
or 2 units)

 

(a)   Scheme of one-hidden-layer networks   (b)   Scheme of two-hidden-layers networks 

Fig. 1 Schemes of BP neural networks, (a) Scheme of one-
hidden-layer networks, (b) Scheme of two-hidden-layers net-
works
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gotten, respectively. Sigmoid and pureline transfer

function was employed for hidden layers and output

layer, respectively.

Training and verifying

Collecting the experimental data

The chemical composition of tested HVHSS is listed in

Table 1. The knowledge of a specific field is implicated

in the existing training samples, so an appropriate

dataset with good distribution is significant for reliable

training and performance of neural networks. To

ensure reasonable distribution and enough information

of the dataset, heat treatment techniques of HVHSS

are covered with different quenching temperatures and

tempering temperatures, as shown in Table 2. The

total samples reach 30.

The alloy ingot was produced by melting the raw

materials in a 50 kg intermediate frequency induction

melting furnace. To improve the absorptivity of vana-

dium, liquid steel was deoxidized preliminarily before

adding ferrovanadium, which was added in liquid steel

in the final stage of melting. At the same time, the

residence time of high temperature liquid steel was

shortened to enable the absorptivity of vanadium to

reach 90%. The final deoxidation was conducted by

adding 0.1% pure aluminum. The modifying agent

used was 0.4% SIII(mainly containing rare earth),

which was developed by researchers. The melting

alloys were tapped from the furnace at about 1500 �C,

and cast at 1450 �C. The hardness of specimens was

measured using an HR-150A Rockwell tester. Five

points were measured for every sample, with the last

value as the average of the five values. The wear test

was conducted on a pin-on-disk (type ML-10) friction

testing machine using 120-grit alumina waterproof-

abrasive sand paper. The test distance was 70 mm · 20,

with pressure at 15.6 MPa. For every group, three

samples were selected, and the wear loss is average

result of the three repetitions. The relative wearability

was specified by e. e = M0/M, where M0 expresses the

maximum wear loss among all the specimens, and M

expresses the wear loss of each tested specimen. The

wear weight losses of samples were measured using

TG328B analytical balance, with range of measurement

of 0–200 g and precision of 0.1 mg.

In this section, 30 experimental data of hardness and

relative wear resistance were collected for building the

neural network models, respectively. Among these, 25

data were selected as training data, and the others were

used to verify the predicted results.

Normalization

In order to relieve the training difficulty and balance

the important of each parameter during training pro-

cess, the examinational data were normalized. It is

recommended that the data be normalized between

slightly offset values such as 0.1 and 0.9. One way to

scale input and output variables in interval [0.1, 0.9] is

as (2)

Pn ¼ 0:1þ ð0:9� 0:1Þ � ðP� PminÞ=ðPmax � PminÞ
ð2Þ

Where Pn is the normalized value of P, and Pmax and

Pmin are the maximum and minimum values of P,

respectively.

After the neural network was trained, tested and

simulated, it is necessary for the simulating data to be

unnormalized corresponded with normalization. The

unnormalized method is as (3)

P ¼ ðPn� 0:1Þ � ðPmax � PminÞ=ð0:9� 0:1Þ þ Pmin

ð3Þ

Where P is the unnormalized value of Pn .

Training and verifying

Figures 2 and 3 shows the changing of sum square errors

with increasing epochs for the one-hidden-layer hard-

ness and relative wear resistance networks, respectively.

The artificial neural networks achieved stable states

after about 50 and 55 cycles of training, respectively,

and the sum square errors of networks reach 0.0579 and

0.1239 at last, respectively (Figs. 2 and 3). The verifying

Table 1 The chemical composition of the studied HVHSS

Element C V Cr Mo Si Mn S P

Content/wt% 2.98 9.80 4.25 2.95 0.65 0.83 0.05 0.06

Table 2 The heat treatment techniques of tested HVHSS

Quenching temperature/
�C

Tempering temperature /�C

250 300 350 400 450 500 550 600

900 + — + — + + + +
950 + + + — + + + +
1000 + — + + + — + +
1050 + — + — + + + +
1100 + — + — + — + +

+: Composite of the corresponding quenching and tempering
temperatures in Table 2

123

J Mater Sci (2007) 42:2565–2573 2567



results of trained data are shown in Figs. 4 and 5,

respectively. On the other hand, the two-hidden-layer

artificial neural networks achieved stable states after

about 70 and 250 cycles of training, respectively, and the

sum square errors of networks reach 0.0474 and 0.0013

at last, respectively (Figs. 6 and 7). And the verifying

results of trained data are shown in Figs. 8 and 9,

respectively. It can be seen from Figs. 2, 3 and Figs. 6, 7

that two-hidden-layer networks have smaller training

errors compared with one-hidden-layer networks. To

test the generalization performance of the trained

networks, the relative errors between the five test data

and the corresponding predicted values from neural

networks are shown in Table 3 for the one-hidden-layer

networks and Table 4 for the two-hidden-layer net-

works, respectively. The test results in Tables 3 and 4

show that the well-trained two-hidden-layer networks

models have much smaller test errors compared with

well-trained one-hidden-layer networks models, and

take on optimal generalization performance. So the

well-trained two-hidden-layer networks models have

greater accuracy in predicting hardness and relative

wear resistance compared with one-hidden-layer net-

works models.

Prediction and discussion

After neural networks are trained successfully, all

domain knowledge extracted out from the existing

samples is stored as digital forms in weights associated

with each connection between neurons. Making full

use of the domain knowledge stored in the well-trained

Fig. 2 The training error curve of one-hidden-layer hardness
network

Fig. 3 The training error curve of one-hidden-layer relative wear
resistance network

Fig. 4 Verifying results for hardness of training samples via one-
hidden-layer neural network

Fig. 5 Verifying results for relative wear resistance of training
samples via one-hidden-layer network
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two-hidden-layer networks, Fig. 10 through 13 were

gotten, which show the relationship of hardness and

relative wear resistance vs. quenching and tempering

temperatures. Obviously, Fig. 10 through 13 exhibit

much more professional knowledge.

The effect of heat treatment temperature

on hardness

The prediction results in Figs. 10 and 11 are as follows:

(1) At any given quenching temperature, hardness

decreases slowly with tempering temperature

increasing to about 450 �C–500 �C, and rises with

tempering temperature continuative increasing to

about 550 �C, and then decreases as tempering

temperature further increases to 600 �C.

(2) The hardness decreases with quenching temper-

ature increasing when tempering temperature is

lower than about 500 �C. When tempering tem-

perature is higher than about 530 �C, the hard-

ness rises as quenching temperature increases

from 900 �C to 1050 �C, and then decreases

rapidly as quenching temperature further in-

creases to 1100 �C.

(3) The peak value of hardness occurs at quenching

of 1000 �C–1050 �C and tempering of 530 �C–

560 �C.

The hardness of HVHSS is mainly related to stress

state and microstructure factors such as retained

austenite content, characteristic of martensite, amount

and type of carbides as well as tempering precipita-

tions. In this work, heat treatment temperatures mainly

influence on stress state, retained austenite content and

Fig. 7 The training error curve of two-hidden-layer relative wear
resistance network

Fig. 9 Verifying results for relative wear resistance of training
samples via two-hidden-layer neural network

Fig. 6 The training error curve of two-hidden-layer hardness
network
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Fig. 8 Verifying results for hardness of training samples via two-
hidden-layer neural network
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characteristic of martensite, but have not obvious

effect on as-cast carbides. The decreasing of stress

and decomposition of martensite will lead to decreas-

ing hardness. But the transformation of retained

austenite to martenite during tempering will cause

the increasing of hardness. Besides, fine carbide pre-

cipitations during tempering will cause secondary

hardening of HVHSS, resulting in increasing overall

hardness also. So the changing of hardness depends on

the composite of four factors above.

At any given quenching temperature, with increasing

tempering temperature from 250 �C to 450 �C–500 �C,

the retained stress of quench decreases rapidly, but the

retained austenite content in matrix decreases slowly

[20], resulting in the slightly decreasing of hardness.

While with further increasing tempering temperature to

550 �C, the retained austenite content rapidly decreases

because of the transformation of retained austenite to

martensite [20], therefore plays a main role in deter-

mining hardness, resulting in the increasing of hardness.

However, with tempering temperature increasing from

550 �C to 600 �C, the hardness decreases because of

decomposition of some martensite.

In the process of quenching of HVHSS, the higher

the austenitizing temperature is, the more the carbon

and alloys, including Cr, Mo and V, dissolving in

Table 3 The tested data, predicted values of one-hidden-layer neural networks and relative errors

Inputs Hardness /HRC Relative wear resistance

Qunching temp. /
�C

Tempering temp. /
�C

Tested
data

Predicted
values

Relative error /
%

Tested
data

Predicted
values

Relative errors/
%

900 500 62.6 64.21 2.57 1.76 1.88 6.82
950 500 62.0 64.39 3.85 1.78 1.98 11.24
950 300 63.6 64.85 1.97 1.81 1.84 1.66
1000 400 60.5 59.57 –1.54 1.59 1.57 –1.26
1050 500 61.8 61.83 0.05 1.91 1.70 –10.99

Table 4 The tested data, predicted values of two-hidden-layer neural networks and relative errors

Inputs Hardness /HRC Relative wear resistance

Qunching temp. /
�C

Tempering temp. /
�C

Tested
data

Predicted
values

Relative error /
%

Tested
data

Predicted
values

Relative errors/
%

900 500 62.6 62.1 –0.80 1.76 1.75 –0.57
950 500 62.0 62.2 0.32 1.78 1.71 –3.93
950 300 63.6 63.3 –0.47 1.81 1.83 1.10
1000 400 60.5 61.1 0.99 1.59 1.61 1.26
1050 500 61.8 60.0 –2.91 1.91 1.80 –5.76

Fig. 10 Prediction on
relationship of hardness vs.
quenching and tempering
temperatures using two-
hidden-layer neural network
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austenite are. This will lead to the increasing of

austenite stability because Cr, Mo and V elements

can stabilize austenite. As a result, retained austenite

content will rise with increasing quenching tempera-

ture at any given tempering temperatures. At temper-

ing temperature of lower than about 450 �C–500 �C,

there are slight retained austenite transformed to

martensite. Therefore, the retained austenite content

plays a main role in determining hardness, resulting in

gradually decreasing hardness with increasing quench-

ing temperature. When the tempering temperature is

higher than about 530 �C, the secondary hardening

occurs because of fine carbide precipitations from

matrix. If the quenching temperature is very low, very

small amount of alloys dissolving in matrix will cause

small amounts of carbide precipitations and poor

secondary hardening capability during high-tempera-

ture temper. With increasing quenching temperature,

the increasing of alloys dissolving in matrix will lead to

the enhanced secondary hardening capability, there-

fore increasing overall hardness of HVHSS. However,

exorbitant quenching temperature will cause super-

abundant retained austenite in matrix, reduced diffi-

cultly even during high tempering temperature, and

plays a crucial role in determining hardness, therefore

decreasing overall hardness of HVHSS.

At quenching temperature of 1000 �C–1050 �C and

tempering temperature of 530 �C–560 �C, the tested

HVHSS possesses optimal secondary hardening capa-

bility and proper retained austenite content, and

therefore possesses maximum values of hardness.

The effect of heat treatment temperature

on relative wear resistance

Figs. 12 and 13 show the relationship of relative wear

resistance vs. quenching and tempering temperatures.

As can be seen from Figs. 12 and 13,

(1) At quenching temperature of 900 �C–1050 �C,

the relative wear resistance nearly takes on the

same changing tendency as hardness with tem-

pering temperature increasing from 250 �C to

600 �C. But the relative wear resistance increases

nearly lineally with increasing tempering temper-

ature at quenching temperature of 1100 �C.

(2) Relative wear resistance decreases with increas-

ing quenching temperature at low tempering

temperature. When tempering temperature is

higher than about 530 �C, it increases to maxi-

mum as quenching temperature increases to

 

Fig. 11 Prediction on the effect of temper temperature on
hardness using two-hidden-layer neural network

Fig. 12 Prediction on the
relationship of relative wear
resistance vs. quenching and
tempering temperatures using
two-hidden-layer network
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1000 �C–1050 �C, and then decreases as quench-

ing temperature further increases to 1100 �C.

(3) The optimal relative wear resistance is acquired

when HVHSS is quenched at 1000 �C–1050 �C

and then tempered at 530 �C–560 �C, correspond-

ing to the peak value of hardness.

The wear resistance of HSS is closely related to

microstructures and mechanical properties. In this

work, the wear resistance of HVHSS mainly depends

on retained austenite content and hardness. In general,

the transformation of retained austenite to martensite

will cause the increasing of hardness, resulting in the

increasing of wear resistance. However, much lower

retained austenite content also does harm to wear

resistance because of the decreasing resistance to crack

initiation and propagation during abrasive wear [21].

The HVHSS with higher hardness possesses stronger

capacity to resist scratch of Al2O3-abrasive, and

therefore possesses more excellent wear resistance.

As a result, at quenching temperature of 900 �C–

1050 �C, the higher hardness after temper is, the more

excellent relative wear resistance of HVHSS has.

Besides, the ultimate decreasing of wear resistance at

high tempering is also related to very small amount of

retained austenite, which can resist the crack initiation

and propagation during abrasive wear. But at quench-

ing of 1100 �C, there are too much retained austenite

in matrix, which plays a crucial role in determining

wear resistance compared with other factors. With

increasing tempering temperature, the retained aus-

tenite content rapidly decreases, accordingly, continu-

ously increasing wear resistance.

At low tempering temperature, the relative wear

resistance of HVHSS gradually decreases with

increasing quenching temperature because of the

increasing retained austenite content. When temper-

ing temperature is higher than about 530 �C, as the

quenching temperature ranging from 900 �C–950 �C

to 1000 �C–1550 �C, the secondary hardening capa-

bility of HVHSS gets optimal gradually and the

proper retained austenite content in matrix was

acquired, resulting in increasing wear resistance. But

the further enhancing of quenching temperature will

lead to the increasing of much retained austenite in

matrix even after HVHSS was tempered at higher

tempering temperature, resulting in the decreasing of

wear resistance.

At quenching and tempering temperatures of

1000 �C–1050 �C and 530 �C–560 �C respectively, the

composites of optimal secondary hardening capability,

proper retained austenite content and maximum values

of hardness result in the most excellent wear resistance

of HVHSS.

Conclusions

(1) The none-linear relationship of hardness (H)

and relative wear resistance (e) vs. quenching

temperature and tempering temperature (T1,

T2) could be built by BP artificial neural

networks. The results show that the well-trained

two-hidden-layer networks have rather smaller

training errors and much better generalization

performance compared with well-trained one-

hidden-layer neural networks, and can precisely

predict hardness and abrasive wear resistance

according to quenching and tempering temper-

atures.

(2) The prediction results show that the optimal

relative wear resistance is acquired after HVHSS

is quenched at 1000 �C–1050 �C and then tem-

pered at 530 �C–560 �C, corresponding to the

peak value of hardness. So the optimal heat

treatment technique of HVHSS has been ac-

quired.

(3) The prediction results have sufficiently mined the

basic domain knowledge of relationship of hard-

ness and relative wear resistance vs. heat treat-

ment techniques of HVHSS. Therefore, a new

way of predicting hardness and relative wear

resistance according to heat treatment technique

has been provided by the authors.
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Fig. 13 Prediction on the effect of temper temperature on
relative wear resistance using two-hidden-layer neural network
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